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SUMMARY 

The regions of applicability of the Boussinesq approximation are investigated for natural convection in a 
fluid-saturated porous medium. A perturbation method is used to assess the relative importance of individual 
terms in the differential equations which describe the natural convection process. Specific limits to the 
validity of the Boussinesq approximation are identified for water and air. For water, it is shown that the 
restrictions imposed by the classical Boussinesq approximation can be relaxed by allowing for the variation 
of thermophysical properties with temperature while still retaining the incompressible form of the continuity 
relation. Results of the analysis are verified through numerical calculations performed for steady natural 
convection in a planar, water-saturated porous region. 
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1. INTRODUCTION 

The Boussinesq approximation' is a commonly employed assumption in both analytic and 
numerical studies of natural convection. Under the standard form of this simplifying assumption, 
the density of the fluid is treated as a constant everywhere except in the buoyancy term in the 
equations of motion. Also, the remaining fluid properties are assumed constant and viscous 
dissipation effects are neglected. This approximation was first suggested by Oberbeck,' prior to 
its use by Boussinesq, and is hereafter referred to as the Oberbeck-Boussinesq or OB approxima- 
tion. When this approximation is invoked in the mathematical description of natural convection 
in a fluid-saturated porous medium, the resulting system of equations is composed of (1)  an 
incompressible form of the continuity equation, (2) Darcy's law and (3) an energy transport 
equation. One of the prime motivations for using the OB approximation is that this simplified 
system of equations is significantly easier to analyse, either analytically or numerically, than the 
exact formulation. 

The use of any approximation requires that the effects of the assumptions on the formulation 
and solution be well understood and quantified. In the present paper we have investigated three 
main aspects of the use of the OB approximation for flows in porous media. Using a method 
developed by Gray and Giorgini3 we have first studied the limits of applicability of the standard 
or strict OB approximation. These results are in the form of allowable temperature differences 
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and length scales for which a simplification of the complete equation system can be justified. 
The same analysis provides guidance in how the strict OB approximation can be relaxed such 
that the restrictions on the allowable temperature differences and length scale are increased 
without significantly increasing the complexity of the problem formulation. This relaxed or 
‘extended’ OB approximation involves the retention of the restrictions on density variations 
while allowing the variation of all other material properties with pressure and temperature. In 
the third portion of the study we have used a numerical method to explore some of the conseque- 
nces of using the strict and extended forms of the OB approximation for convective flows in an 
enclosure. In particular, we have examined the changes in the flow fields, temperature distributions 
and heat transfer rates to be expected when different formulations are employed. 

Previous work in this area has concentrated on the effects of the OB approximation for 
ordinary natural convection described by the Navier-Stokes equations. MacGregor and Emery4 
explored the effects of a variable viscosity on convective flows in enclosures. Rube1 and Landis’ 
extended the previous work by considering variations in a number of material properties for 
flows at moderate Rayleigh number. Variable property boundary layer flows in water were 
analysed by Shaukatullah and Gebhart6 and Leonardi and Reizes’ presented a thorough study 
of variable property air flows in closed cavities. Several investigations”’ have examined the effect 
of variable fluid properties on the onset of convection in porous layers. Also, Ribando and 
Torrance” presented solutions that illustrate the effects of a variable viscosity and permeability 
on finite amplitude convection in rectangular enclosures. Despite the interest in using various 
forms of the OB approximation, relatively little attention has been focused on the problem of 
defining the limits of applicability of these formulations for porous flow problems. It is this topic 
that is addressed here. 

2. MATHEMATICAL SYSTEMS STUDIED 

2.1. Complete system 

In this section we identify a mathematical representation which is appropriate for the descrip- 
tion of natural convection in a homogeneous, isotropic, porous medium and which forms the 
basis for subsequent analytical and numerical investigations. The porous matrix is assumed to 
be rigid and in thermal equilibrium with the saturating fluid. It is further assumed that the fluid 
motion can be adequately described by Darcy’s law. Equations expressing conservation of mass, 
Darcy’s law, and thermal energy transport have the forms 

aP 
at 

4- + div (pv) = 0, 

(2) P -v = - grad P - p g  grad h, 
k 

aT 
( p C  ) - + pC,v.grad T= div(K,grad T), 

p e a t  (3) 

where v is the bulk volume-averaged Darcy velocity, P is the pore volume averaged pressure, 
and T is the temperature. In equation (3) we have neglected the effects of pressure variations 
as well as viscous dissipation of energy. The symbols 4, p, C,, p, k,  g and K denote, respectively, 
porosity, density, specific heat, viscosity, permeability, acceleration due to gravity and thermal 
conductivity. The elevation h is measured vertically upward. The subscript e denotes effective 
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properties which are related to the fluid and solid matrix properties by the assumed relations 

where the subscript s identifies solid matrix properties and properties without a subscript are 
those of the fluid. In general, the fluid properties p,Cp,p and K depend on temperature and 
pressure. Solid matrix properties as well as porosity and permeability are assumed constant. 

The mathematical system described by equations (1)-(9, together with appropriately specified 
thermophysical properties and boundary conditions, constitutes what we shall refer to as the 
‘complete’, or exact, system for the description of transient natural convection in a homogeneous, 
isotropic, fluid-saturated porous medium. The primary additional restriction which must be placed 
on the validity of this system is that the velocity must be low enough to ensure the applicability of 
Darcy’s law. Darcy’s law is generally valid so long as the Reynolds number based on the square root of 
the permeability and the Darcy velocity is less than unity.” For such low velocities, the neglect of 
pressure work and viscous dissipation can generally be justified. 

2.2. Oberbeck-Boussinesq ( O B )  systems 

The OB approximation requires that the fluid density be treated as constant everywhere except 
in the body force term in the equation of motion. For purposes of the present paper, we define 
a ‘strict’ OB system as the system of equations which results when the OB approximation is 
invoked with regard to the density variation and it is further assumed that all remaining 
thermophysical properties are constant. Under the stated assumptions, equations (1)-(3) become 

div (v) = 0, (6) 

(7) 

(8) 

P -v = - grad P - pg grad h, 
k 

aT 
(p  C ) - + poCpv-grad T= K,div(grad T),  

where the zero subscript indicates a constant reference fluid density and effective properties are 
obtained from equations (4) and (5). Equations (6)-(8) will be referred to as the strict OB system 
in subsequent discussions. 

If we retain the OB approximation, but relax the additional restriction requiring that all 
thermophysical properties, other than fluid density, remain constant, we obtain a system of 
equations which we shall refer to as the ‘extended’ OB system, following the convention adopted 
by Gray and G i ~ r g i n i . ~  This system of equations can be obtained from equations (6)-(8) by 
replacing the right-hand-side of equation (8) with div ( K ,  grad T),  to account for the variability 
of the thermal conductivity. 

O P e a t  

3. ANALYSIS OF THE OBERBECK-BOUSSINESQ APPROXIMATION 

In this section, we shall deduce the conditions for which we are justified in replacing the complete 
system, given by equations (1)-(3), with the strict OB system as given by equations (6)-(8). 
Furthermore, we shall investigate the advantages attained through implementation of the 
extended OB system. 



998 D. K. GARTLING AND C. E. HICKOX 

3.1. Non-dimensional equations 

In order to recover the strict OB system from equations (1)-(3), a number of terms must be 
eliminated. The justification for neglecting the various terms is obtained by application of the 
perturbation approach used by Gray and Giorgini in their study of the OB approximation 
for ordinary natural convection involving liquids and gases. 

It is first assumed that the fluid properties can be represented by the linearized Taylor series 
expansions: 

(94  

(9b) 

(94 

( 9 4  

P = POP - B o V -  To) + Yo(P - PO)I? 

c, = c,oc1 + ao(T- To) + bo(P - PO)l, 

P = P O C 1  + c o v -  To) + do(P - PO)l? 

K = KoI1 + eo(T- To) +fo(P - Poll, 
where the subscript 0 represents the reference state (To, Po)  and all coefficients are constant. 
Although the use of linearized Taylor series expansions can generally be justified, care must be 
exercised when considering fluids, such as water, which exhibit a density maximum. 

Next, the differential equations are rendered non-dimensional, through the choice of suitable 
scales, so that all functions of the non-dimensional variables are, at most, of order unity. This is 
accomplished through the introduction of a characteristic length scale L, a characteristic 
temperature difference 8, and a buoyancy velocity scale p o g ~ o B k / p o .  The corresponding 
reference time is then given by poL/p0g/?,Bk. Dynamic pressures, i.e. the difference between 
local pressure and the pressure in the static state, are scaled by (pogfio8L).  Pressure differences 
between local conditions and the reference state, as well as derivatives of pressure, are scaled 

Application of the scaling factors to equations (1)-(5) produces a non-dimensional system of 
equations. This latter system includes the Rayleigh number, p~C,ogfio8kL/K,,po, as a 
parameter. In addition, there result eight parameters which are denoted by to E ~ .  For details 
of the non-dimensionalization, as applied to ordinary natural convection, Reference 3 should 
be consulted. The current application closely parallels that of Reference 3 except that a generaliza- 
tion of Darcy’s law is used instead of the Navier-Stokes equations and the continuity and 
thermal energy transport equations are modified for application to porous media. 

A brief illustration of the technique is afforded by consideration of the continuity relation, 
equation (1). Application of the appropriate scaling parameters, together with equation (9a), 
provides the following result 

- E ~ (  4ar+ +.grad + c2 4- + $.gradP + [l - el(?- To) + c2(P - Po)] div+ = 0, 

where z is the non-dimensional time, the circumflex indicates a non-dimensional quantity, 
c1 = B O B  and c2  = yopogL. Anticipating a later result, we note that in order to recover the 
incompressible form of the continuity relation it is necessary that the absolute values of E~ and 
c2  be small when compared with unity; thus indicating restrictions on the allowable temperature 
difference and length scale. 

Darcy’s law and the energy transport relation are rendered non-dimensional by the straight- 
forward, but somewhat lengthy, application of the scaling factors which have been described. 
The &-parameters which result are defined in Table I along with an indication of the equations 
in which they appear. 

by ( P o d ’ ) .  

(10) 
) ( E  ^> a? 
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Table I: Definitions of &-parameters 

Applicable 
Parameter Definition equation 

Table TI. Properties of water and air at 15 "C and 1 atm, from 
Reference 3 

Property Water Air Units 

P O  

PO 
C P O  

KO 
Po 

ho 

d0 

f O  

Y o  
a0 

CO 

1 .o 
4.2 
1.0 x 10-2 
5.9 x 10-3 
1.5 x 10-4 
4.9 x 10-11 

- 2.4 x 10-4 
-2.5 x LO-'' 
- 2.7 x 
- 2.7 x lo-" 

4.3 x 10-10 
1.7 x 10-3 

1.2 x 10-3 

1.7 x 10-4 
2.5 10-4 
3.5 x 10-3 

4.5 x 10-5 
1.9 x 10-9 
2.8 x 10-3 

2.4 x 10-3 

1 .o 

1.0 x 10-6 

0 

0 

gm/cm3 
J/gm "C 
gm/cm s 
J/cm so C 
1i"c 
cm2/dyne 
1i"C 
cm2/dyne 
1i"c 
cm2/dyne 
1 /"c 
cm2/dyne 

Evaluation of the E'S requires a knowledge of certain specific fluid properties. Values for these 
properties, adapted from Reference 3, are summarized in Table I1 for water and air at 15 "C 
and 1 atm, and will be used to illustrate the application of the derived results. 

3.2. Application of the results 

Upon consideration of the non-dimensional results, it can be shown that, in order to recover 
the strict OB system, equations (6)-(8), from the complete system, equations (1)-(3), it is necessary 
that the absolute value of each s,(n = 1,2,3,. . . ,8)  be small when compared with unity. For water, 
the most restrictive of these requirements for the allowable temperature difference and length 
scale are, respectively, E~ << 1 and c8 << 1. For air, the corresponding requirements are c1 << 1, and 
E~ << 1.UponassumingavalueofO-1 forthes's, theinformationinTablesIandIIcanbe used to produce 
numerical estimates of the allowable temperature differences and length scales for water and air. The 
results are summarized in the first two columns of Table 111. At this point, the most significant 
observation that can be made from Table 111 is that the strict OB system is limited in application to a 
characteristic temperature difference of only 3.7 "C for water and 28.6 "C for air. This result is 
similar to the restrictions applicable to the use of the strict OB system for ordinary natural 
convection. 

Investigation of the limits of applicability for the extended OB system results in the new 
requirements that << 1 and c2 << 1 for water. The requirements for air are unchanged from 
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Table TIT.  Allowable temperature and length scalespredic- 
ted for Boussinesq systems 

strict Extended 
Boussinesq Boussinesq 

Fluid O("C) L(m) O(OC) L(m) 

Water 3.1 2373 667* 20,825 
Air 28.6 850 28.6 850 

* Violates linear assumption, actually 0 - 100 "C 

those necessary for the strict OB system. If a value of 0 1  is again assumed for the E'S, then the 
results tabulated in the last two columns of Table I11 are obtained. For water, it is immediately 
obvious that the range of applicability of the extended Boussinesq system is significantly wider 
than that associated with the strict OB system. The predicted allowable temperature difference 
of 667°C obviously violates the assumption of linearity used in the analysis. The true physical 
requirement is simply that the maximum density change which results from a characteristic 
temperature difference must be small when compared with the reference density p o .  Taking into 
account the non-linearity of the density-temperature relation for water and using the reference 
conditions of Table 11, we conclude that the allowable temperature difference is O(lOO°C) for 
the extended OB system. The increased range of validity associated with the extended OB system, 
for water, is primarily a result of the relatively strong temperature dependence of the viscosity. 
Hence, by simply allowing for the variation of physical properties with temperature, we are able 
to significantly extend the region of validity of the OB approximation for liquids such as water. 
Except for extremely large-scale motions, the restrictions imposed by pressure differences are 
not anticipated to exert a controlling influence on the applicability of the equations. For 
laboratory-scale experiments, or applications to typical insulation systems, we need be concerned 
only with the restrictions imposed by temperature differences. 

We should note that the actual numerical values presented for the allowable temperature 
differences and length scales (Table 111) are somewhat arbitrary since they depend directly on 
assumed values for the E'S in the perturbation analysis. The choice of E = 0 1  is reasonable for 
enforcing the condition that E << 1. Such a choice implies that, at most, the error in satisfying 
the conservation of mass equation will be 10 per cent. Unfortunately, there is no way to relate 
this error magnitude to changes or errors in the field variables (i.e. v, P ,  T )  and thus know 
quantitatively how well an OB system will approximate the complete equation set. The numerical 
studies to be described in a subsequent section will be used to resolve this dilemma. 

4. NUMERICAL STUDIES 

The results of the perturbation analysis have shown that by employing the extended OB 
approximation in lieu of the strict OB formulation, larger temperature differences and length 
scales may be used in porous flow problems without significant deviation from an incompressible 
continuity equation. Unfortunately, the analysis is not able to provide precise, verifiable bounds 
on the allowable temperature differences; this information must come from a direct comparison 
of solutions for the various formulations. In this section we present a numerical study of natural 
convection in a simple porous region with a view toward quantifying the differences in the 
previously described formulations. The previous results indicate that the advantages of the 
extended Boussinesq system are realized only when the saturating fluid viscosity exhibits a 
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relatively strong temperature dependence. For this reason, we will be concerned with a porous 
region that is saturated with water. Furthermore, it has also been shown that property variations 
with pressure are unimportant in laboratory-scale experiments. Also, a consideration of the 
information in Tables I and I1 shows that, for water, the variation of specific heat with temperature 
and pressure is significantly less important than the variations of the other physical properties. 
We have thus elected to treat the specific heat as constant and to include only the effects of 
temperature variations on the other fluid properties ( p ,  p, K )  in the numerical simulations. 

4.1. Problem geometry 

The geometry used in the numerical simulations is illustrated in Figure 1. A fluid-saturated, 
planar, porous bed is contained within a square enclosure which measures l m  on a side. All 
boundaries are impermeable. The upper and lower boundaries are perfectly insulated and a 
constant temperature difference is imposed between the vertical side walls, with each side wall 
maintained at a uniform temperature. The higher temperature wall is on the right. The tempera- 
tures of the side walls are raised or lowered by equal amounts relative to the mean reference 
temperature of the enclosure which is held constant at 47 "C for all calculations. It is assumed 
that the porous region is nominally at a mean pressure of 1 atm, hence maximum and minimum 
side wall temperatures are restricted to 90 "C and 4 "C, respectively. 

It is assumed that the porous matrix is composed of glass (SiO,) spheres. Depending on the 
geometry of the packing, the porosity of a bed of spheres can vary between 0.260 and 0.476. In 
all calculations, the sphere diameter d,  porosity 4 and permeability k were chosen to be 
commensurate with the Kozeny-Carman equation' 

k =: d243/180(1 - 4)'. (1 1) 

Specifically, a diameter of 0-1 cm and a porosity of 0.26 were selected for the numerical simulations. 
All physical properties of the glass were assumed constant. Values of the physical properties 
and expressions for the temperature dependence of the fluid properties are summarized in the 
Appendix. The geometry, materials and boundary conditions were selected to be representative 
of a laboratory experiment. 

IY 

H = l m  

- 

/ / /  / /  / / / / / /  

INSULATED 

WATER - SATURATED 
POROUS REGION 

1, 
T2 ' T1 

X 
____c 

1 L = l m  

Figure 1. Schematic diagram of the geometry used for the numerical simulations 
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4.2.  Computational approach 

Numerical solutions for the example problem described in the previous section were obtained 
with a finite element computer program. Since a complete description of this program is available 
e l~ewhere '~* '~  we shall not discuss the details of the numerical method in the present paper. 
The computer program is based on the Galerkin form of the finite element method and is 
primarily designed to provide numerical solutions to both the strict and extended OB systems. 
The program has been extensively tested, compared to analytic and numerical solutions' 5*16 
and benchmarked against experimental data.' 7,18 

In order to carry out the study of interest, numerical solutions to the fully compressible equations 
were also required. These solutions were obtained from the same basic finite element program, a 
situation that was made possible by a judicious change of variables. Limiting attention to the steady 
flow case, we define a new velocity variable as v' = pv/po, where v is the usual Darcy velocity. 
Substituting this new variable into the complete system of equations (1)-(3) produces the following 
system: 

div V' = 0, (12) 

POP 
--V' = - grad P - pg grad h, 
Pk 

p,C,v'.grad T= div(K, grad T).  (14) 

Mathematically, these equations are identical to the extended OB system, for steady flow, where 
the fluid viscosity is replaced by pop/p. Hence, numerical solutions to the complete system can 
be obtained from a numerical model which uses the OB approximation, but allows for the 
variation of thermophysical properties other than fluid density, i.e. the extended OB approxima- 
tion. We were thus able to solve all three equation systems of interest with the same numerical 
method by simply re-interpreting variables and allowing the appropriate variation of material 
properties. 

For purposes of analysis, the porous region was discretized using a 20 x 20 mesh of eight-node 
quadrilateral elements. Most solutions were obtained using a uniform element spacing. However, in 
order to assess the adequacy of the uniform grid, gradations in element size ranging up to a ratio of 
16:l were used for selected cases, to provide increased resolution near boundaries, and the results 
compared with those obtained using the uniform grid. It was found that the uniform grid provided 
acceptable results, and was therefore used for most of the calculations. Based on studies which we have 
reported it is concluded that the number of elements used in the analysis is 
significantly larger than that required for acceptable accuracy. 

5. RESULTS OF THE NUMERICAL STUDIES 

In this section we describe the results of the numerical studies for the three systems of equations 
under consideration. 

5.1.  Heat transfer rates 

The effect of the two OB approximations on the overall heat transfer rate across the enclosure 
is illustrated in Figure 2. Heat transfer rates predicted from the strict and extended OB systems 
are compared with those computed using the complete system of equations as a plot of the 
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Boussinesq System 
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Figure 2. Nusselt number against Rayleigh number for the enclosure geometry and three equation systems 

Nusselt number 

N U  = QL/K,ATH = Q/K,AT 

Ra = P;Cp,g/3okLAT/P0K,o. (16) 

(15) 

against the Rayleigh number 

In equations (15) and (16) all properties were evaluated at the mean temperature of the cavity 
(47 "C), Q is the total heat transfer rate across the enclosure, and ATis the imposed temperature 
difference across the enclosure. The results of Figure 2 represent overall temperature differences 
ranging from 1 "C to 70°C. The total heat transfer rate across the enclosure (Q) was evaluated 
by computing the local heat flux in those finite elements adjacent to the vertical boundaries and 
then employing a simple quadrature rule to integrate the resulting flux distribution. Overall heat 
transfer rates computed on the two boundaries agreed within a tolerance of & 1 per cent for all 
Rayleigh numbers. 

It is obvious from the computed results that the use of either OB system does not strongly 
influence the overall heat transfer rate. At the higher Rayleigh numbers the strict OB overpredicts 
the Nusselt number whereas the extended OB result is below the results for the complete system. 
The maximum difference in Nusselt number for all three equation systems is less than 5 per cent 
at the highest Rayleigh number considered in this study. 

The limited extent to which the Nusselt number is influenced by property variations can be 
deduced, mathematically, from a consideration of the symmetry properties exhibited by the 
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system of equations. For water, the most pronounced property variation is associated with the 
temperature dependence of the viscosity. Hence, it is sufficient to consider only this effect in 
assessing the influence of property variations on the Nusselt number. Consider the steady-state 
form of the extended OB equations (6)-(8) and represent the viscosity by equation (Sc), neglecting 
the effect of pressure changes (do = 0). Following the general approach outlined by Rube1 and 
Landis’ the pressure is eliminated by cross-differentiation of Darcy’s law and a stream function 

is introduced to satisfy the continuity equation. Since it is convenient to use the non-dimensional 
form of the resulting equations, we adopt the scaling parameters introduced in section 3.1 and 
note that the stream function is made non-dimensional through division by the reference velocity 
and length scale. The stream function and temperature are then expanded in regular perturbation 
series in terms of the small parameter &=coo. At zeroth order, the strict OB equations are 
recovered and, to first-order, equations are obtained that express the first-order effects of viscosity 
variation. Symmetry properties associated with these perturbation equations can then be used 
to deduce the extent to which the viscosity variation affects the overall heat transfer rate across 
the enclosure. 

Mathematically, the structure of the strict OB equation dictates that the solution to this system 
possess a certain symmetry. Specifically, for the geometry and co-ordinates of Figure 1, if ‘%‘(t,q), 
?“(t,a) denote non-dimensional solutions to the strict OB system, where $is defined by ( T -  To)/$ 
and ( t ,q )  = (x ,y ) /L ,  then it can be demonstrated by direct s u b s t i t u t i ~ n ’ ~ ~ ~ ~  that the equations 
are invariant under the transformation q ( 5 , q )  = q(z$, T(t,q) = - ‘i.(F,q) where %= 1 - 5 
and i j  = 1 - q. Hence, q(zfj) and - T(zrj) are also solutions. This resulting ‘centre'-symmetry 
places a strong constraint on solutions to the strict OB system that is not present in either of 
the other two systems studied. Solutions to the first-order perturbation equations exhibit the 
following symmetry: ql(<,q) = - ‘%‘‘(Cfj) and T1(t,q) = Tl(ztj). 

Using the symmetry properties described above plus the requirement that the average Nusselt 
numbers evaluated on either vertical boundary be identical, allows the average Nusselt number 
for the enclosure to be determined as 

Nu = N u o  + 0 ( c 2 ) ,  (17) 
where Nu,  is the Nusselt number associated with the strict OB system of equations and the 
O ( E ~ )  term represents the correction due to viscosity variation. There is no first-order correction 
to the heat transfer rate. For the parameters used in the numerical study, the maximum value 
of E is 0.95. Thus, the maximum correction to the Nusselt number is of the order of 0.89. A 
consideration of Figure 2 shows that the actual computed effect is approximately one-third of 
the estimated value. However, the estimate is certainly valid to an order-of-magnitude. We thus 
conclude that the lack of sensitivity of the heat transfer rate to the equation system selected is 
supported by theoretical considerations. 

5.2. Thermal and flow fields 

Although the heat transfer rate is not strongly influenced, the predicted flow field can be 
significantly affected by the particular choice of the system of equations chosen for its description. 
As an example, in Figure 3 we show plots of the computed isotherms and streamlines associated 
with each of the three mathematical systems studied for a Rayleigh number of 207.5, corresponding 
to an overall temperature difference of 50 “C. This particular set of comparative calculations was 
performed on a non-uniform mesh in order to better resolve the important features of the flow 
field. A horizontal mesh gradation was used with element widths on the vertical boundaries 
being a factor of eight smaller than those on the midplane of the enclosure. A temperature 
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difference of 50 "C was chosen since it represents an approximate order of magnitude increase 
over the maximum allowable temperature difference predicted for the strict OB system. In the 
Figure, isotherms are equally spaced between a value of 72°C on the hot wall and 22°C on the 
cooler wall. Streamlines are equally spaced between a value of zero on the boundary and the 
maximum value of the stream function quoted for each plot. The location of the maximum 
stream function is indicated by a small cross. 

Upon comparing the plots in Figure 3, it is observed, as anticipated from the heat transfer 
results, that the thermal fields exhibit relatively little sensitivity to the system of equations chosen 
for the description of the natural convection process. The streamline distribution is, however, 
noticeably affected. A strong asymmetry results from the use of the complete system which is 
due, primarily, to the relatively strong variation of the viscosity of water with temperature. The 
good agreement obtained between the results of the complete system and those of the extended 
OB system further supports this observation. 

The solutions to the complete and extended OB system show a progressive deviation from 
the centro-symmetric solution of the strict OB system (as described in section 5.1) with increasing 
Rayleigh number (i.e. increasing AT). This trend is illustrated in Figure 4 where vertical velocity 

( iii ) 

Isotherms 

Re= 207.5 

Figure 3(a). Isotherms calculated for the enclosure geometry for each of the equation systems studied (i) strict OB; 
(ii) extended O B  (iii) complete. Ra = 2075, AT = 50 "C 
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Streamlines 

Ra = 207.5 

( iii ) 

Figure 3(b). Streamlines calculated for the enclosure geometry for each of the equation systems studied (i) strict OB, 
Y,,, = 0.234 x m2/s; (ii) extended OB, YmaX = 0,257 x 10-*m2/s; (iii) complete, Y,,, = 0.245 x lob5 rn’js. 

Ra = 207.5, AT= 50 “C 

profiles taken across the cavity mid-height are shown for three different Rayleigh numbers. Note 
that the plotted velocity field has been made non-dimensional with a reference (buoyancy) velocity 
defined by vref = yyfiATk/p. At the lower Rayleigh number all three systems produce very similar, 
symmetric profiles (Figure 4(a)). For intermediate Rayleigh numbers the extended OB and 
complete system solutions begin to develop an asymmetry in the velocity profile with the higher 
velocities occurring on the hot wall. The highest Rayleigh number cases show very strong 
asymmetries and noticeable differences between the solutions for all three equations systems. 
Note that pointwise, differences between the strict OB and complete system solutions are as 
large as 100 per cent near the cold wall. 

For the purpose of later discussion we have attempted to quantify the differences between the 
numerical solutionsforthevariousequationsystemsconsidered. Shownin Figures 5 and 6areplots of 
the norm of the difference between two solution quantities against the Rayleigh number and imposed 
temperature difference. In each case the discrete l 2  norm was used which is defined by 

N ,  = / /  x - xcs / /  = 
n 
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I 

0 Complete System 

Boussinesq System I 

0 

Extended Boussinesq 
System 

o-2 t 0 

Ra = 290.5 

-. 

-0.4 I 
X 

Figure 4(c). Vertical velocity profile along the horizontal mid-plane of the enclosure, Ra = 290.5. Note: Points 1 and 2 
have ordinate values of 0.66 and 052, respectively 

where n is the number of solution points considered, xi is a solution variable for either the strict or 
extended OB system and xp" is a solution variable for the complete equation system. Each norm is thus 
taken with respect to the solution for the complete equation system. The solution variables used for 
comparison were the normalized values of the velocity and local heat flux; the velocity was normalized 
by the buoyancy velocity defined previously, and the local heat flux was normalized by a conductive 
heat flux defined by qref = K,AT/L. To simplify the computations the norm was taken over the n 
points in a one-dimensional profile within the cavity. The velocity profile was located at the mid- 
height of the cavity (same profile as shown in Figure 4) and the flux profile was located along the 
vertical (hot) wall. These locations were selected as showing representative (large) differences between 
the various solutions. 

It is apparent from Figures 5 and 6 that the extended OB approximation always produces a 
solution that is 'closer' to the complete equation solution than the strict OB approximation. This 
result is, in effect, a restatement of the result produced by the perturbation analysis. For a specified 
accuracy (i.e. difference relative to the complete equation solution) the extended OB approxim- 
ation can be used over a wider range of temperature differences than the strict OB approximation. 
Based on the limited data in Figures 5 and 6 the increase in allowable temperature difference for the 
extended OB approximation is a factor of N (1.5-2.5) larger than for the strict OB approximation. 
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The smaller (1.5) factor is controlled by the accuracy of the heat flux, whereas the larger (2.5) factor is 
dictated by thevelocity norms. Thesefactorsmust only be regarded as rough approximations since the 
variation of the norms with Rayleigh number (and AT) is not linear. However, we note that the (1.5- 
2.5) increase in allowable temperature difference predicted from the numerical solutions is roughly an 
order of magnitude less than the increase predicted by the perturbation analysis (see Table 111). 

6. DISCUSSION AND CONCLUSIONS 

At the outset of this study our primary objective was to answer the following two questions: 
(i) Over what range of temperature differences does the strict OB approximation produce a valid 
description of natural convection in a porous medium? and (ii) Can the extended OB approxim- 
ation be used to advantage in this class of problems? We employed two different, but 
complementary, techniques to try to answer these questions and provide ‘rules-of-thumb’ for using 
the OB approximation. Our success in reaching these objectives is assessed in the present section. 

The perturbation analysis of section 3 provided a systematic method for evaluating various 
forms of the OB approximation and, in fact, permitted a quantitative estimate for the acceptable 
range of temperature differences for each system of equations. Unfortunately, the quantitative 
results of this analysis are predicted on an assumed tolerance for the satisfaction of the 
incompressibility constraint. This tolerance cannot be related to accuracy estimates on the primary 
dependent variables (e.g. velocity, temperature) and therefore, no obvious judgement can be made 
on the temperature difference estimates derived from the analysis. However, the perturbation 
procedure does provide a definitive, affirmative answer to our second question. By allowing the 
fluid properties to vary with pressure and temperature the range of allowable temperature 
differences can be enlarged, at least for liquids. The actual factor by which this range can be 
increased is not well defined by the perturbation analysis for the reasons outlined above. 

The results of the numerical solutions provided a second method for assessing the behaviour of 
the OB approximation. We initially believed that this approach would produce definitive answers 
to our problem and, in addition, clarify some of the quantitative uncertainties in the perturbation 
analysis. However, as will be shown subsequently, the interpretation and conclusions drawn from 
the numerical simulations are also plagued by the need for subjective judgements. In this case the 
main difficulty is determining when an approximate OB solution is sufficiently ‘close’ to the 
solution for the complete equation system. 

From the results presented in section 5 it is observed that as the temperature difference across 
the cavity is increased (increasing Rayleigh number) both the strict and extended OB solutions 
show a smooth, progressive departure from the ‘true’ solution. Since there is no precipitous 
breakdown in the OB approximation a judgement must be made as to when (in terms of 
temperature difference) the strict and extended solutions are sufficiently different from the 
complete equation solution to be declared incorrect. Based on the simulation results presented here 
we have reached the conclusion that there is no unique answer to this question. Rather, the 
‘goodness’ of the OB solutions depend on what quantities are of interest in the problem solution. 

As shown in Figure 2 the overall heat transfer rate across the cavity is relatively insensitive to the 
OB approximation. Thus, if only overall, integrated energy transport is of interest then the OB 
equation systems may be used over very large temperature differences with only minor 
inaccuracies. Conversely, when the accurate prediction of a flow field is of concern then the OB 
approximation is seen to breakdown at much smaller imposed temperature differences. The actual 
point of this breakdown is subject to a judgement on the part of the analyst, though some 
reasonable quantitative estimates are possible. As an example, assume that errors in the velocity 
norm of up to - 0.0025 are viewed as acceptable. In more physical terms, such an assumed error 
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bound corresponds to a maximum pointwise error in the velocity field of - 10 per cent for both 
the strict and extended OB solutions. Referring to Figure 5 the specified tolerance on the velocity 
norm translates into acceptable maximum temperature differences of - 11 "C (Ra = 45) and - 30 "C (Ra = 124) for the strict and extended OB approximations, respectively. Comparing these 
limits to those produced by the perturbation analysis (Table 111) shows that the perturbation 
results are slightly too conservative for the strict OB system and too optimistic for the extended OB 
equations. 

Despite the inability to produce rigorous quantitative bounds on the use of the OB 
approximation, several specific statements and conclusions can be derived from the present study. 
In particular: 

(i) The utility of a perturbation technique was demonstrated for the systematic analysis of 
various forms of the OB approximation. 

(ii) The benefits of employing the extended OB approximation for liquid-saturated porous 
media were predicted via the perturbation analysis and verified by the numerical 
simulations. 

(iii) The differences in the solutions to the OB equation systems and the complete equation 
system were illustrated and quantified as a function of Rayleigh number. Overall heat 
transfer quantities were judged to be insensitive to the type of equation system considered. 
The variations in the flow fields due to changes in equation system were noted and 
discussed. 

(iv) Estimates of maximum allowable temperature difference were developed to bound the use of 
the OB approximations. For a water-saturated porous medium, temperature differences of 
approximately 10 "C and 30 "C were proposed for the strict and extended OB systems, 
respectively. These values were felt to provide solutions in reasonable agreement with 
solutions to the complete equation system. 

(v) It is our opinion that the use of the OB approximation is a very convenient and powerful 
approach to analyzing natural convection problems, especially via numerical methods. 
However, the precise effects of the approximation on the solution are difficult to quantify, 
and thus great care must be taken when evaluating solutions to OB equations. 
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APPENDIX: MATRIX AND FLUID PROPERTIES USED IN THE NUMERICAL 
SIMULATIONS 

Matrix-glass (SiO,) 

p s  = 2650 kg/m3 

K ,  = 1.50 J/ms "C 

C,, = 794 J/kg "C 
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Water 

p = b0(10)", rn = b,/(T- b2), kg/ms 

K = cnTn, J/ms"C 
4 

n = O  

C ,  = 4180 J/kg "C = constant 

where the temperature T is in "C, and 
u0 = 999.83952 
a, = 16.945176 
a2 = - 7.9870401 x 

a4 = 105.56302 x loA9 
a3 == -46.170461 x 

U S  = - 280.54253 x 

a6 = 16.879850 x loA3 

bo = 241-4 x 
b ,  = 247799 
b, = 139.998 
CO E - 0.92247 
c1 = 1.039538 x lo-* 
c2 = - 2413453 x lon5 
c3 = 2.579836 x lo-' 
C ,  = 1.319252 x lo-" 
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